Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(9): 4193-4203, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393778

RESUMO

Sulfur disproportionation (S0DP) poses a challenge to the robust application of sulfur autotrophic denitrification due to unpredictable sulfide production, which risks the safety of downstream ecosystems. This study explored the S0DP occurrence boundaries with nitrate loading and temperature effects. The boundary values increased with the increase in temperature, exhibiting below 0.15 and 0.53 kg-N/m3/d of nitrate loading at 20 and 30 °C, respectively. A pilot-scale sulfur-siderite packed bioreactor (150 m3/d treatment capacity) was optimally designed with multiple subunits to dynamically distribute the loading of sulfur-heterologous electron acceptors. Operating two active and one standby subunit achieved an effective denitrification rate of 0.31 kg-N/m3/d at 20 °C. For the standby subunit, involving oxygen by aeration effectively transformed the facultative S0DP functional community from S0DP metabolism to aerobic respiration, but with enormous sulfur consumption resulting in ongoing sulfate production of over 3000 mg/L. Meanwhile, acidification by the sulfur oxidation process could reduce the pH to as low as 2.5, which evaluated the Gibbs free energy (ΔG) of the S0DP reaction to +2.56 kJ, thermodynamically suppressing the S0DP occurrence. Therefore, a multisubunit design along with S0DP inhibition strategies of short-term aeration and long-term acidification is suggested for managing S0DP in various practical sulfur-packed bioreactors.


Assuntos
Carbonatos , Ecossistema , Compostos Férricos , Nitratos , Nitratos/metabolismo , Processos Autotróficos , Temperatura , Enxofre/metabolismo , Reatores Biológicos , Desnitrificação , Nitrogênio
2.
Bioresour Technol ; 393: 130081, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993067

RESUMO

The sulfur fluidizing bioreactor (S0FB) has significant superiorities in treating nitrate-rich wastewater. However, substantial self-acidification has been observed in engineering applications, resulting in frequent start-up failures. In this study, self-acidification was reproduced in a lab-scale S0FB. It was demonstrated that self-acidification was mainly induced by sulfur disproportionation process, accounting for 93.4 % of proton generation. Supplying sufficient alkalinity to both the influent (3000 mg/L) and the bulk (2000 mg/L) of S0FB was essential for achieving a successful start-up. Furthermore, the S0FB reached 10.3 kg-N/m3/d of nitrogen removal rate and 0.13 kg-PO43-/m3/d of phosphate removal rate, respectively, surpassing those of the documented sulfur packing bioreactors by 7-129 times and 26-65 times. This study offers a feasible and practical method to avoid self-acidification during restart of S0FB and highlights the considerable potential of S0FB in the treatment of nitrate-rich wastewater.


Assuntos
Nitratos , Águas Residuárias , Processos Autotróficos , Desnitrificação , Enxofre , Reatores Biológicos , Concentração de Íons de Hidrogênio , Nitrogênio
3.
Environ Sci Technol ; 57(43): 16522-16531, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844031

RESUMO

Reactive fillers consisting of reduced sulfur and iron species (SFe-ReFs) have received increasing attention in tertiary wastewater treatment for nitrate and phosphate coremoval. However, the existing SFe-ReFs suffer from either low performance (e.g., pyrrhotite and pyrite) or unsatisfactory use in terms of combustible risk and residual nonreactive impurities (e.g., sulfur mixing with natural iron ores). Here, we developed a new type of sulfur-siderite composite ReF (SSCReF) with a structure of natural siderite powders eventually embedded into sulfur. SSCReFs exhibited many excellent properties, including higher mechanical strengths and hardness and especially much poorer ignitability compared to pure sulfur. By using SSCReF to construct packed-bed reactors, the highest denitrification and dephosphorization rates reached 829.70 gN/m3/d (25 wt % siderite) and 36.70 gP/m3/d (75 wt % siderite), respectively. Dephosphorization was demonstrated to be dependent on sulfur-driven denitrification, in which the acid produced from the later process promoted Fe(II) dissolution, which then directly combined with phosphate to form vivianite or further converted into phosphate adsorbents (ferrihydrite, a green rust-like compound). Water flush was an effective way to finally wash out these surface deposited Fe-P compounds, as well as those nonreactive impurities (Si and Al-bearing compounds) detached from SSCReF. Such a highly efficient and safe SSCReF holds considerable application potential in secondary effluent polishing.


Assuntos
Desnitrificação , Nitratos , Reatores Biológicos , Enxofre , Ferro , Fosfatos , Nitrogênio , Processos Autotróficos
4.
Environ Res ; 238(Pt 2): 117213, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776937

RESUMO

Sulfur-packed beds (SPBs) have been increasingly incorporated into constructed wetland systems to overcome limitations in achieving satisfactory nitrate removal efficiency. However, the underlying impact of hydraulic regimes on SPB performance remains understudied. This study investigated the performance of a pilot-scale SPB, encompassing sulfur autotrophic denitrification (SAD) and sulfur disproportionation (SDP) processes, under various horizontal flow (HF) and vertical flow (VF) regimes. The HF regime exhibited superior SAD efficiency, achieving 3.1-4.4 mg-N/L of nitrate removal compared to 0.9-2.8 mg-N/L under VF regimes. However, greater sulfide production of 3.8-5.6 mg/L was observed, in contrast to only 1.5-2.3 mg/L under VF regimes when SDP occurred. Employing current computational fluid dynamics simulations could predict general regimes but lacked precision in detailing sulfur layer dynamics. In contrast, determining the spatial distribution of SAD substrates and SDP products offered a viable solution, revealing stagnate, short-circuit, and back flows. Moreover, the feasibility of an aeration approach to reduce sulfide emissions below 0.5 mg/L in case of accidental SDP occurrence was confirmed. This study offers a method for assessing detailed hydraulic regimes within SPBs. Additionally, it provides guidance on optimizing the packing of sulfur-based materials when implementing SPBs in constructed wetland systems and presents a strategy for mitigating excessive sulfide emissions.


Assuntos
Desnitrificação , Nitratos , Enxofre , Áreas Alagadas , Sulfetos , Reatores Biológicos , Nitrogênio
5.
Water Res ; 243: 120356, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516076

RESUMO

Elemental sulfur packed-bed (S0PB) bioreactors for autotrophic denitrification have gained more attention in wastewater treatment due to their organic carbon-free operation, low operating cost, and minimal carbon emissions. However, the rapid development of microbial S0-disproportionation (MS0D) in S0PB reactor during deep denitrification poses a significant drawback to this new technology. MS0D, the process in which sulfur is used as both an electron donor and acceptor by bacteria, plays a crucial role in the microbial-driven sulfur cycle but remains poorly understood in wastewater treatment setups. In this study, we induced MS0D in a pilot-scale S0PB reactor capable of denitrifying over 1000 m3/d nitrate-containing wastewater. Initially, the S0PB reactor stably removed 6.6 mg-NO3--N/L nitrate at an empty bed contact time (EBCT) of 20 mins, which was designated the S0-denitrification stage. To induce MS0D, we reduced the influent nitrate concentrations to allow deep nitrate removal, resulted in the production of large quantities of sulfate and sulfide (SO42-:S2- 3.2 w/w). Meanwhile, other sulfur-heterologous electron acceptors (SHEAs), e.g., nitrite and DO, were also kept at trace levels. The negative correlations between the SHEAs concentrations and the sulfide productions indicated that the absence of SHEAs was a primary inducing factor to MS0D. The microbial community drastically diverged in response to the depletion of SHEAs during the switch from S0-denitrification to S0-disproportionation. An evident enrichment of sulfur-disproportionating bacteria (SDBs) was found at the S0-disproportionation stage, accompanied by the decline of sulfur-oxidizing bacteria (SOBs). In the end, we discovered that shortening the EBCT and increasing the reflux ratio could inhibit sulfide production by reducing it from 43.9 mg/L to 3.2 mg/L or 25.5 mg/L. In conclusion, our study highlights the importance of considering MS0D when designing and optimizing S0PB reactors for sustainable autotrophic sulfur denitrification in real-life applications.


Assuntos
Desnitrificação , Nitratos , Processos Autotróficos , Enxofre , Reatores Biológicos/microbiologia , Bactérias , Sulfetos , Nitrogênio
6.
Environ Res ; 231(Pt 1): 116061, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149027

RESUMO

Dosing sulfide into the sulfur-packed-bed (S0PB) has great potential to enhance the denitrification efficiency by providing compensatory electron donors, however, the response of sulfur-metabolizing biofilm to various sulfide dosages has never been investigated. In this study, the S0PB reactor was carried out with increasing sulfide dosages by 3.6 kg/m3/d, presenting a decreasing effluent nitrate from 14.2 to 2.7 mg N/L with accelerated denitrification efficiency (k: 0.04 to 0.27). However, 6.5 mg N/L of nitrite accumulated when the sulfide dosage exceeded 0.9 kg/m3/d (optimum value). The increasing electron export contribution of sulfide a maximum of 85.5% illustrated its competition with the in-situ sulfur. Meanwhile, over-dosing sulfide caused serious biofilm expulsion with significant decreases in the total biomass, live cell population, and ATP by 90.2%, 86.7%, and 54.8%, respectively. This study verified the capacity of dosing sulfide to improve the denitrification efficiency in S0PB but alerted the negative effect of exceeded dosing.


Assuntos
Reatores Biológicos , Desnitrificação , Sulfetos , Enxofre , Biofilmes
7.
Bioresour Technol ; 367: 128238, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334869

RESUMO

The effect of particle morphology on denitrification performance in element sulfur-based denitrification (ESDeN) packed-bed process is a gap. In this study, three different types of commercial sulfur particles were selected to build the ESDeN reactors. The results showed the reactors filled with rougher sulfur particles took shorter time to reach stable denitrification performance in the start-up stage. The reactors filled with cap-shape sulfur particles received the maximum nitrate removal rate of 849.49 ± 79.29 g N m-3 d-1 at empty bed contact time of 0.50 h, which was 2.34 times higher than that with ball-shape sulfur particles in the steady stage. The superior denitrification performance in the cap-shape particles set linked to its larger effective volumetric surface area (ωe, 1.67 times larger) and to the longer actual hydraulic retention time (AHRT, 1.80 times longer). This study extends the knowledge of the dependency of sulfur particle properties on denitrification performance in ESDeN packed-bed reactor.


Assuntos
Reatores Biológicos , Desnitrificação , Enxofre , Nitratos , Processos Autotróficos , Nitrogênio
8.
Environ Res ; 215(Pt 2): 114348, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36155154

RESUMO

Nitrate pollution is an important cause of eutrophication and ecological disruption. Recently, element sulfur-based denitrification (ESDeN) has attracted increasing attention because of its non-carbon source dependence, low sludge yield, and cost-effectiveness. Although the denitrification performance of sulfur autotrophic denitrifying bacteria at different temperatures has been widely studied, there are still many unknown factors about the adaptability and the shaping of microbial community. In this study, we comprehensively understood the shaping of ESDeN microbial communities under different temperature conditions. Results revealed that microbial communities cultivated at temperatures ranging from 10 °C to 35 °C could be classified as high-temperature (35 °C), middle-temperature (30, 25 and 20 °C), and low-temperature (15 and 10 °C) communities. Dissolved oxygen in water was an important factor that, in combination with temperature, shaped microbial community structure. According to network analysis, the composition of keystone taxa was different for the three groups of communities. Some bacteria that did not have sulfur compound oxidation function were identified as the "keystone species". The abundances of carbon, nitrogen, and sulfur metabolism of the three microbial communities were significantly changed, which was reflected in that the high-temperature and middle-temperature communities were dominated by dark oxidation of sulfur compounds and dark sulfide oxidation, while the low-temperature community was dominated by chemoheterotrophy and aerobic chemoheterotrophy. The fact that the number of microorganisms with dark oxidation of sulfur compounds capacity was quite higher than that of microorganisms with dark sulfur oxidation capacity suggested that the sulfur bioavailability at different temperatures, especially low temperature, was the main challenge for the development of efficient ESDeN process. This study provided a biological basis for developing a high-efficiency ESDeN process to cope with temperature changes in different seasons or regions.


Assuntos
Desnitrificação , Microbiota , Bactérias , Reatores Biológicos/microbiologia , Nitratos/química , Nitrogênio/metabolismo , Oxigênio/metabolismo , Esgotos/microbiologia , Sulfetos , Enxofre/química , Enxofre/metabolismo , Compostos de Enxofre/metabolismo , Temperatura , Água
9.
Environ Res ; 210: 113009, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35218715

RESUMO

This study was carried out to determine the inhibition of low temperature on the performance of S0-based autotrophic denitrification (S0-SAD) biofilter, and proposed to enhance the nitrate removal efficiency with thiosulfate as external electron donor. With the decline of temperature from 30 °C to 10 °C at 0.25 h of empty bed contact time (EBCT), the nitrate removal rate presented a logarithmical drop, and the effluent nitrate dramatically increased from 9.19 mg L-1 to 15.13 mg L-1. EBCT was prolonged until 0.33 h for 20 °C, 0.66 h for 15 °C and 1.5 h for 10 °C, respectively, to maintain the effluent nitrate below 10 mg L-1. Such excessive variation of EBCT for different temperature is undoubtedly incredible for practical engineering. Thiosulfate, as the external electron donor, was adopted to compensate the efficiency loss during temperature decrease, which significantly prompted nitrate removal rate to 0.59, 0.53 and 0.31 kg N m-3 d-1 at 20 °C, 15 °C and 10 °C conditions, respectively, even at a short EBCT of 0.25 h. It not only acted as compensatory electron donor for nitrate removal, but also promoted the contribution of elemental sulfur via accelerating the DO consumption and extended larger effective volume of S0-layer for denitrification. Meanwhile, the significant enrichment of Sulfurimonas and Ferritrophicum provided biological evidences to the enhancement process. However, the incomplete consumption of thiosulfate was observed especially at EBCT of 0.25 h and 10 °C, and the thiosulfate runoff needs to be concerned in case of contaminating the effluent. Herein, approximately extending EBCT to 0.66 h and decreasing thiosulfate dosage were conducted simultaneously, thereby achieving 100% thiosulfate utilization efficiency and expected nitrate removal. This study provided a fundamental guidance to design and operate S0-SAD biofilter in response to seasonal temperature variation for practical engineering.


Assuntos
Desnitrificação , Tiossulfatos , Reatores Biológicos , Elétrons , Nitratos , Nitrogênio , Temperatura
10.
Environ Res ; 204(Pt A): 112016, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34509485

RESUMO

This study was carried out to determine the effect of influent nitrate loading on nitrite accumulation during elemental-sulfur based denitrification process, and proposed to enhance the nitrogen removal efficiency by mitigating nitrite accumulation with thiosulfate as external electron donor. Along with increasing the nitrate influent loading (from 0.09 kg N/m3/d to 1.73 kg N/m3/d) by shortening the empty bed contact time (EBCT) (from 5 h to 0.25 h), the nitrate removal loading increased from 0.08 to 0.83 kg N/m3/d. Meanwhile, the raise of the nitrate influent loading obviously aggravated the nitrite accumulation. Herein, nitrite began to accumulate since the nitrate influent loading was over 0.86 kg N/m3/d, and a maximum nitrite accumulation of 2.39 mg/L was observed under the 0.25 h of EBCT and 15 mg/L of nitrate influent concentration condition. Thiosulfate was used as the external electron donor to accelerate the nitrite reduction rate in order to mitigate the nitrite accumulation. As a result, the nitrite accumulation significantly decreased from 2.39 mg/L to 0.17 mg/L with the thiosulfate dosage of 13.36 mg/L. However, the nitrite accumulation bounced with the on-going increase of the thiosulfate dosage, indicating that the nitrate reduction rate and nitrite reduction rate were accelerated alternatively. After dosing thiosulfate, the relative abundances of sulfurimonas and ferritrophicum grew up significantly.


Assuntos
Nitritos , Tiossulfatos , Reatores Biológicos , Desnitrificação , Elétrons , Nitratos , Nitrogênio
11.
Environ Res ; 197: 111029, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744267

RESUMO

Sulfur autotrophic denitrification (SAD) process, as an alternative to heterotrophic denitrification (HD) filter, receives growing interest in polishing the effluent from secondary sewage treatment. Although individual studies have indicated several advantages of SAD over HD, rare study has compared these two systems under identical condition and by using real secondary effluent. In this study, two small pilot scale filters (SAD and HD) were designed with identical configuration and operated parallelly by feeding the real secondary effluent from a WWTP. The results showed SAD filter can be started up without the addition of soluble electron donor, although the time (14 days) was about 3 times longer than that of HD filter. The nitrate removal rate of SAD filter at HRT of 1.4 h was measured as 0.268 ± 0.047 kg N/(m3∙d). Similar value was observed in HD filter with supplementing 90 mg/L COD. The COD concentration of effluent always kept lower than that of influent in SAD filter but not in HD filter. In addition, SAD filter could maintain a stable denitrification performance without backwash for 15 days, while decline of nitrate removal rate was observed in HD filter just 2 days after stopping the backwash. This different behavior was further confirmed as the SAD filter had a better hydraulic flow pattern. Analysis according to high-throughput 16S rRNA gene-based Illumina MiSeq sequencing clearly showed the microbial community evolution and differentiation among the samples of seed sludge, SAD and HD filters. Finally, the economic assessment was carried out, showing the operation cost of SAD filter was over 50% lower than that of HD filter.


Assuntos
Desnitrificação , Hidrodinâmica , Reatores Biológicos , Nitratos , Nitrogênio , RNA Ribossômico 16S/genética , Enxofre
12.
Talanta ; 73(5): 857-61, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-19073112

RESUMO

In situ preparation of polypyrrole (Ppy) by photo-polymerization coated on a quartz crystal microbalance (QCM) as a low humidity sensor was reported. Different concentrations of Ppy films say 0wt.% (as blank), 0.1, 1, and 10wt.% were investigated to measure humidity concentrations between 14.7 and 5412.5ppm(v). The adsorption/desorption behavior was also examined at humidity concentration 510.2ppm(v). The sensitivities of 0, 0.1 and 1wt.% Ppy films at 51.5ppm(v) were 0.143, 0.219 and 0.427, respectively. For 1wt.% Ppy, the highest sensitivity was obtained. The slope and correlation coefficients (R(2)) for 1wt.% Ppy at the ranges of 14.7-898.6ppm(v) were 0.0646 and 0.9909, respectively. A series of molecular simulations have been carried out to calculate bond energy for the water molecule interaction with Ppy, which was found to be approximately 3kcal/mol indicating the existence of hydrogen bonding during the sorption process. Based on Langmuir isotherm adsorption assumption, for 0.1 and 1wt.% Ppy films, the association constants were 2606.30 and 5792.98, respectively. This larger association constant for 1wt.% Ppy film explains higher sensitivity.

13.
Talanta ; 69(4): 946-51, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970662

RESUMO

A novel ceramic nanowires of TiO(2) and poly(2-acrylamido-2-methylpropane sulfonate) (TiO(2) NWs/PAMPS) composite material films coated on quartz crystal microbalance (QCM) was prepared as a low humidity sensor. The 50wt.% of TiO(2) NWs/PAMPS composite material films showed excellent sensitivity (2.63-DeltaHz/Deltappm(v)) at 31.5ppm(v)), linearity (R(2)=0.9959) and acceptable response time (64s at 34.6ppm(v)). The low humidity sensing mechanism was discussed in terms of surface texture and nanostructured morphology of the composite materials. Moreover, the adsorption dynamic analysis, molecular mechanics calculation (association constant), was used to elucidate the effect of adding 50wt.% TiO(2) NWs into PAMPS in the increased sensitivity of low humidity sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...